Energy dissipation during two-state switching for quantum-dot cellular automata
نویسندگان
چکیده
We examine the energy dissipated by a two-state quantum system during switching operation when interacting with thermal environment. For an isolated system, excess decreases exponentially time. classically damped systems, dissipation linearly model coupled to environment using Lindblad equation for density matrix. rapid switching, exponential adiabaticity holds. slow enough damping from bath yields linear dissipation, as in classical limit. Between these two limits, time is comparable characteristic transfer bath, there inverted region increases longer times. Consequences design of molecular quantum-dot cellular automata are discussed.
منابع مشابه
Exploring and Exploiting Quantum-Dot Cellular Automata
The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presente...
متن کاملA New Design for Two-input XOR Gate in Quantum-dot Cellular Automata
Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension, therefore, it is a promising alternative to CMOS technology. In QCA, configuration of charges plays the role which is played by current in CMOS. This replacement provides the significant advantages. Additionally, exclusive-or (XOR) gate is a useful building block in man...
متن کاملexploring and exploiting quantum-dot cellular automata
the full adders (fas) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. with respect to the mosfet restrictions, its replacement by new devices and technologies is inevitable. qca is one of the accomplishments in nanotechnology nominated as the candidate for mosfet replacement. in this article 4 new layouts are presented fo...
متن کاملQuasiadiabatic switching for metal-island quantum-dot cellular automata
Recent experiments have demonstrated a working cell suitable for implementing the quantum-dot cellular automata ~QCA! paradigm. These experiments have been performed using metal-island clusters. The most promising approach to QCA operation involves quasiadiabatically switching the cells. This has been analyzed extensively in gated semiconductor cells. Here we present a metal-island cell structu...
متن کاملDesign of Optimized Quantum-dot Cellular Automata RS Flip Flops
Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2021
ISSN: ['1089-7550', '0021-8979', '1520-8850']
DOI: https://doi.org/10.1063/5.0033633